
HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Determining parallel application execution
efficiency & scaling using the POP methodology

Marta García-Gasulla & Sandra Mendez (Barcelona Supercomputing Center)
Anke Visser & Brian Wylie (Jülich Supercomputing Centre)

• [120] Presentations with demonstrations of tools

• (break)

• [90] Hands-on exercises using tools with provided measurements

• Download material for hands-on exercises from SwapCard page
• https://fz-juelich.sciebo.de/s/ku8yg5uAlssdWso

• Folder with slides & measurements for analysis:
• ISC24_tutorial_guide.pdf (preparation instructions)

• BTMZ & SMXV (Scalasca/CUBE profiles)

• lulesh (Paraver/Extrae traces)

2

Logistics

3

Tutorial materials website
linked from Swapcard page

• Welcome/Introduction
• [15] POP Centre of Excellence goals, services and tools
• [30] POP methodology and scaling/efficiency metrics

• Review of representative performance assessments
• [30] Assessments using JSC tools
• [30] Assessments using BSC tools

• Setup for hands-on exercises
• [15] Installing Paraver & Scalasca/CUBE GUIs

• (break)

• Analyzing provided measurements
• [75] Demonstrations & hands-on exercises

• Review and conclusion

4

Agenda

• Hands-on exercises analyzing provided measurements
• Paraver

• Determining a suitable focus of analysis (FOA) from event traces

• Determining efficiencies for the FOA

• In-depth examination

• Clustering

• Scalasca/CUBE
• Determining a suitable focus of analysis (FOA) from profiles

• Determining efficiencies for the FOA

• In-depth examination

• Critical path and delay analysis

• Review and conclusion

5

Agenda for hands-on session

HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Selected performance assessments
using Scalasca/Score-P/CUBE

Brian Wylie (Jülich Supercomputing Centre)

• Collection of trace-based performance tools
• Specifically designed for large-scale systems
• Features automatic trace analyzer providing wait-state, critical-path & delay analysis
• Supports MPI, OpenMP, POSIX threads, and hybrid MPI+OpenMP/Pthreads
• Uses Score-P instrumentation & measurement infrastructure

and CUBE analysis report infrastructure

• Available under 3-clause BSD open-source license

• Documentation & sources:
• https://www.scalasca.org

• Contact:
• mailto: scalasca@fz-juelich.de

7

Scalasca

Score-P
• Infrastructure for instrumentation and performance measurements

• Instrumented application can be used to produce several results:
• Call-path profiling: CUBE4 data format used for data exchange
• Event-based tracing: OTF2 data format used for data exchange

• Supported parallel paradigms:
• Multi-process: MPI, SHMEM
• Thread-parallel: OpenMP, Pthreads
• Accelerator-based: CUDA, HIP, OpenCL, OpenACC, Kokkos

• Open Source; portable and scalable to all major HPC systems

• Initial project funded by BMBF

• Further developed in multiple third-party funded projects

• Documentation & sources: https://www.score-p.org

Parallel Performance Analysis using Scalasca (Oxford, UK, 22-23
August 2023)

8

Sc
o

re
-P Scalasca Trace Tools analysis

9

Scalasca workflow

Instr.

target

application

Measurement

library

HWC
Parallel wait-state

search
Wait-state

report

Local event
traces

Summary report

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented
executable

Source modules

R
ep

o
rt

m

an
ip

u
la

ti
o

n

Which problem?
Where in the

program?
Which

process?

• Parallel program analysis report exploration tools
• Libraries for Cube report reading & writing
• Algebra utilities for report processing
• GUI for interactive analysis exploration

• Available under 3-clause BSD
open-source license

• Documentation & sources:
• http://www.scalasca.org

• User guide also part of installation:
• <prefix>/share/doc/CubeGuide.pdf

• Contact:
• mailto: scalasca@fz-juelich.de

10

Cube

• Run remote (often convenient)
• start X server (e.g., Xming) locally

or use mobaXterm or VNC

• connect with X forwarding enabled
• -Y may be faster but is insecure!

• load cube module and start cube
remotely

11

Cube GUI options

Install & run local
 install Cube GUI locally on desktop
 binary packages available for macOS & Windows

and externally provided by OpenHPC and various

Linux distributions

 source package available for Linux, requires Qt

 configure/build/install manually or use your

favourite framework (e.g. Spack or EasyBuild)

 copy .cubex file (or entire scorep directory) to

desktop from remote system

OR locally mount remote filesystem

 start cube locally

https://www.scalasca.org/scalasca/software/cube-4.x/download.html

mailto: scalasca@fz-juelich.de

Advisor assessment

12

Assessment
of execution
efficiency
factors using
POP model

• Largest experiment
• Application: Nekbone

• System: JUQUEEN IBM BG/Q

• 28,672 x 64 = 1,835,008 threads

13

Scalasca Exascale Readiness

• Largest experiment by user
• Application: NEST

• System: K computer

• 82,944 x 8 = 663,552 threads

HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Using Scalasca/Score-P/CUBE
Brian Wylie (Jülich Supercomputing Centre)

• Scalasca/Score-P/CUBE analysis based on sets of execution call-paths
(call-graph subtrees) rather than execution time intervals
• generally all instances aggregated together (automatically)

• facilitates scalability,

• but therefore can’t readily distinguish individual (or ranges of consecutive) instances

• Comprehensive parallel execution traces are often prohibitively large
• too many events to collect/analyse, requiring too much memory

• may also be subject to considerable measurement distortion

• Necessary to balance content/expressiveness and cost
• typically an iterative process

15

Alternate approach

• Prepare an initial “rough” (summary) measurement

• Determine an appropriate Focus of Analysis (FOA)

• Refine instrumentation/measurement configuration for chosen FOA
• Apply judicious filtering

• Add manual annotations and measurement control

• Collect execution trace & summary profiles with sets of HWCs

• Use CUBE Advisor to acquire efficiency metrics for FOA

• Explore other metrics as directed by efficiency metrics

16

Steps

• Default of “main” will include one-off initialization (MPI_Init) and
finalization (MPI_Finalize) as well as initial file reading, etc.
• Fine if these are only small proportions of overall execution

• Cleaner if a specific call-path can be identified which avoids the one-
off parts amortised in long production runs
• where solver/timestep/iterations occur

• expected to be (largely) homogeneous, representative of typically longer executions

• if necessary, multiple call-paths can be combined
• however, should avoid disjoint call-paths

• may be annotated as a specific Score-P region for convenience

• allows shorter execution measurements to still be representative
• proportionally reduces size of execution traces

17

Determining a Focus of Analysis (FOA)

• Application developers likely know the most relevant parts of their
code to focus on
• may depend on the particular context of analysis

• comparing a new algorithm or implementation

• addressing file I/O, etc.

• Generally, analysts won’t know and will need to determine this
• perhaps based on guidance from application developers

18

Familiarity

• Often one FOA is sufficient
• provided it is a good representation of the dominant parallel execution phase

• simplifies subsequent analyses

• but sometimes beneficial to have several
• perhaps to include initialization and/or file reading/writing as comparison

• where performance/scaling characteristics are very different

• may therefore want/need to explore/evaluate several candidates

• Timeline visualization of an execution trace can help identify the key
execution phase(s) and associated call-paths

19

One or more FOA

• Obtaining an execution trace is often prohibitively expensive
• requiring instrumentation/measurement to be suitably configured

• Generally need initial profile to refine instrumentation/measurement
• “scoring” of profiles provides good estimate of total trace size and data to be

collected by each process/thread
• “score” based on number of times each event encountered (i.e. number of visits)

• allows measurement buffers to be sized appropriately
• to avoid intermediate flushes of measurement buffers to files on disk storage

• identifies small frequent events with disproportionate overheads that don’t
add value to measurement (and may well distort it significantly)
• these should be filtered during measurement

• or preferably avoided when instrumenting

20

Which comes first: profile or trace?

• Main value is from communication and synchronization events
• typically MPI message-passing and/or OpenMP worksharing, tasking, offload

• but also SHMEM, pthreads, OpenACC, OpenCL, CUDA, ROCm/HIP, etc.

• represent additional parallel execution costs

• and the regions which provide execution context for them

• Purely computational regions are relatively low value for analysis
• might all be ignored, or retain only a few key large ones

• often fine to retain most, provided the small frequent ones are avoided
• equivalent to them being “inlined” into their parent regions

21

Value determination

• HemeLB (MPI) on SuperMUC-NG
• also previously assessed on ARCHER Cray XC30 & Blue Waters Cray XE6

• SPECFEM3D (MPI+CUDA) on Leonardo-B
• MPI version previously assessed on Joloit-Curie

22

Example performance assessments

• 3D macroscopic blood flow in human arterial system developed by UC London (UK)
• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary

conditions
• exascale flagship application of EU H2020 HPC Centre of Excellence

for Computational Biomedicine (CompBioMed)

• HemeLB open-source code and test case: www.hemelb.org
• C++ parallelized with MPI

• Intel Studio 2019u4 compiler and MPI library (v19.0.4.243)
• configured with 2 ‘reader’ processes (intermediate MPI file writing disabled)
• MPI-3 shared-memory model employed within compute nodes

to reduce memory requirements when distributing lattice blocks from reader processes

• Focus of analysis 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry
• 6.4µm lattice resolution (21.15 GiB): 10,154,448,502 lattice sites

• Executed on SuperMUC-NG Lenovo ThinkSystem SD650 (LRZ):
• 2x 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz
• 48 MPI processes/node, 6452 (of 6480) compute nodes: 309,696 MPI processes
• 190x speed-up from 864 cores: 80% scaling efficiency to over 100,000 cores

⇒ Identification & quantification of impact of load balance and its variation

23

HemeLB (SuperMUC-NG)

24

HemeLB@SNG strong scaling

[Execution of 9,216 processes on 192 compute nodes not possible due to insufficient compute nodes with adequate memory in ‘fat’ partition (768 GiB vs. regular 96 GiB node memory]

HemeLB@SNG strong scaling efficiency

Global scaling efficiency fairly good around 80%, before degrading at larger scales
• Parallel efficiency deteriorating following Load balance efficiency

• Communication efficiency excellent throughout

• Computation scaling (relative to 1152 processes) very good except at largest scale
• Degradation of Instructions scaling partially compensated by improving IPC scaling

[POP CoE scaling efficiency model: www.pop-coe.eu]
25

Advisor: POP efficiency assessment

26

Topological presentation

27

• HemeLB on SuperMUC-NG (MPI)
• also previously assessed on ARCHER Cray XC30 & Blue Waters Cray XE6

• SPECFEM3D on Leonardo-B (MPI+CUDA)
• also previously assessed on Joloit-Curie

38

Example performance assessments

• SPECFEM3D
• Software package for simulation of seismic wave propagation based on the spectral-element method
• Assessment for HPC CoE for Exascale in Solid Earth (ChEESE)
• Version 4.0.0 (release)

• Fortran90 (and some C) parallelized with MPI & CUDA: one MPI process per GPU
• Intel oneAPI 2023.0.0 compilers and 2021.7.1 MPI libraries (not GPU-Aware)

• Testcase: 1 source in elastic domain; 4 seismic receiver stations
• 48000 solver timesteps with intermediate writing disabled
• weak scaling (22x 128x128 = 360,448 elastic elements per rank)
• strong scaling (22x 1024x1024 = 23,068,672 elastic elements total)

• Executed on Leonardo-Booster Atos Bull Sequana XH21355 (CINECA)
• 2345 compute nodes with 32-core Intel Xeon Platinum 8358 ('IceLake') CPUs @ 2.6 GHz and

quad Nvidia A100 ('Ampere') GPUs [64GB]
• Nvidia Mellanox HDR DragonFly++ interconnection network

• Measurements with Scalasca/2.6.1 using Score-P/8.3

• Focus of analysis (FOA): xspecfem3D/iterate_time

39

SPECFEM3D (Leonardo-B)

• Structure
• setup/initialise (amortised in full run)

• read (w/o MPI), MPI_Bcast, MPI_Reduce, etc

• solver (iterate_time)
• 48000 timesteps

• non-blocking point-to-point communication for
boundary exchange with 2D neighbours

• data transfer to/from associated GPU device and
corresponding stream synchronization

• summary output every 500 steps
• collective MPI_Reduce

• write_seismograms executed only once

• Focus of Analysis selected for assessment:
iterate_time

40

Execution call-tree & Focus of Analysis

• Structure
• solver (iterate_time)

• contains all of the CUDA kernel executions

• 48000 timesteps
• seven of nine kernels executed by all ranks

• characteristics oft determined by position in 2D grid

• compute_add_sources_kernel only executed by a
single GPU (rank 243 of 512)

• compute_elastic_seismogram only by 4 nearby GPUs
(ranks 241, 245, 273, 277 of 512)

• Focus of Analysis selected for assessment:
iterate_time

41

Execution call-tree & kernels

42

Scaling & speed-up

• xspecfem3d FOA iterate_time on Leonardo-Booster
• Excellent weak scaling (expected to continue to higher node counts)
• Very good strong scaling (above 80% of perfect) to around 64 compute nodes (256 GPUs)

43

Efficiency model (weak scaling)

• Excellent GPU weak scaling efficiency

• Very poor CPU efficiency?

• Moderate XPU (GPU+CPU) efficiency?

• Orchestration efficiency

• MPI communication
& CUDA management

• aka Communication
efficiency

44

Efficiency model (strong scaling)

• Good GPU weak scaling efficiency to 128 GPUs (excellent load balance)

• Very poor CPU efficiency?

• Moderate XPU (GPU+CPU) efficiency?

• Orchestration efficiency

• MPI communication
& CUDA management

• aka Communication
efficiency

45

Weak scaling (128x128 per rank)
• Excellent weak scaling

• Little GPU idle time

• MPI communication effectively
overlapped with GPU kernel
computation

46

Strong scaling (1024x1024 total)
• Good scaling to 256 GPUs

(64 nodes)

• GPU computation time slowly
grows progressively

• GPU idle time grows for 256 &
particularly 512 GPUs

• CPU computation time grows
substantially

• sync_copy_from_device &
transfer_boundary_to_device_a

• For 512 GPUs, growing MPI
communication no longer fully
overlapped with GPU kernel
computation

47

Topological inhomogeneities

Kernel variant executed (characteristics and corresponding execution time) varies according to position in 2D grid:
four corners, upper/lower & left/right edges, interior

16x32 grid

48

Topological inhomogeneities

Kernel variant executed (characteristics and corresponding execution time) varies according to position in 2D grid:
four corners, upper/lower & left/right edges, interior

16x32 grid

49

GPU computation imbalance

36% of CPU execution time is CUDA synchronization, 67% of which is 16s within transfer_boundary_from_device_a
following compute_add_sources_kernel that's only executed by a single GPU (source rank 243 of 512)

• iterate_time (solver) chosen as focus of analysis
• negligible time for initialization/finalization

• Excellent weak scaling up to 16 nodes (64 GPUs) and likely beyond
• Computation very well balanced over GPUs; Excellent GPU utilization

• MPI P2P communication time grows with scale, but effectively overlapped
with GPU computation kernels

• Good strong scaling speedup up to 64 nodes (256 GPUs)
• Computation remains very well balanced over GPUs

• Orchestration efficiency progressively diminishes
• compute_add_sources_kernel execution by a single GPU seems the main origin

• MPI P2P communication time grows significantly, becomes no longer fully
overlapped with GPU computation kernels

50

Summary of observations

EU H2020 Centre of Excellence (CoE) 1 October 2015 – 31 March 2018
1 December 2018 – 30 November 2021

Grant Agreement No 676553 and No 824080

Hands-on: Analyzing BT-MZ with Scalasca/CUBE
Anke Visser (Jülich Supercomputing Centre)

NPB-MZ-MPI Suite / BT-MZ

• The NAS Parallel Benchmark suite (MPI+OpenMP version)
• Available from:

http://www.nas.nasa.gov/Software/NPB

• 3 benchmarks configurable for various sizes & classes

• BT-MZ (Block Triangular solver, multizone version)
• solves discretized version of unsteady, compressible Navier-Stokes equations

in three spatial dimensions

• Implemented in 20 or so Fortran90 source modules

• 200 time-steps on a regular 3-dimensional grid timed for benchmark figure

• Built & run on JUWELS-Cluster (dual 24-core Intel Skylake nodes)
• Intel compiler + MPI, instrumentation by Score-P

70

Ex: Identify suitable Focus of Analysis

• Initial execution measurement configuration
• Class=B benchmark executable run on a single compute node

• 12 MPI processes each with 4 OpenMP threads

• Initial (default) summary measurement:
• BT-MZ / scorep_bt-mz_B_12x4_sum.def / summary.cubex

• [Filtered summary measurement: scorep_bt-mz_B_12x4_sum.filt]

• [Filtered trace measurement: scorep_bt-mz_B_12x4_trace]

71

Ex: Determining FOA efficiency

• Instrumentation to annotate FOA

• Revised execution measurement configuration
• Class=C benchmark executable run on a single compute node
• 24 MPI processes each with 4 OpenMP threads

• Combined summary(HWC)+trace analysis measurements:
• BT-MZ / bt-mz_C_24x4 / bt-mz_C_N1p24c1_trace+summary.cubex
• BT-MZ / bt-mz_C_24x4 / bt-mz_C_N1p24c4_trace+summary.cubex

• Compare efficiencies of the two execution configurations

• Examination of additional analysis metrics

72

HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Determining parallel application execution
efficiency & scaling using the POP methodology

Marta Garcia-Gasulla & Sandra Mendez (Barcelona Supercomputing Centre)
Anke Visser & Brian Wylie (Jülich Supercomputing Centre)

POP CoE

• Promotes best practices in parallel programming

• Encourages a systematic approach to performance optimization

• Facilitates and invests in training HPC experts

POP Performance Metrics

• Build a quantitative picture of application behaviour

• Allow quick diagnosis of performance problems in parallel codes

• Identify strategic directions for code refactoring

• So far metrics for MPI, OpenMP and hybrid (OpenMP + MPI) codes

POP works

• Across application domains, platforms, scales

• With European academic, government and industrial customers
including code developers, code users, HPC service providers and
vendors

• To apply for a POP service go to https://pop-coe.eu/services

74

Summary

https://pop-coe.eu/services

5/8/2024 75

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

