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• [120] Presentations with demonstrations of tools

• (break)

• [90] Hands-on exercises using tools with provided measurements

• Download material for hands-on exercises from SwapCard page
• https://fz-juelich.sciebo.de/s/ku8yg5uAlssdWso

• Folder with slides & measurements for analysis:
• ISC24_tutorial_guide.pdf (preparation instructions)

• BTMZ & SMXV (Scalasca/CUBE profiles)

• lulesh (Paraver/Extrae traces)
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Logistics
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Tutorial materials website
linked from Swapcard page



• Welcome/Introduction
• [15] POP Centre of Excellence goals, services and tools
• [30] POP methodology and scaling/efficiency metrics

• Review of representative performance assessments
• [30] Assessments using JSC tools
• [30] Assessments using BSC tools

• Setup for hands-on exercises
• [15] Installing Paraver & Scalasca/CUBE GUIs

• (break)

• Analyzing provided measurements
• [75] Demonstrations & hands-on exercises

• Review and conclusion
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Agenda



• Hands-on exercises analyzing provided measurements
• Paraver

• Determining a suitable focus of analysis (FOA) from event traces

• Determining efficiencies for the FOA

• In-depth examination

• Clustering

• Scalasca/CUBE
• Determining a suitable focus of analysis (FOA) from profiles

• Determining efficiencies for the FOA

• In-depth examination

• Critical path and delay analysis

• Review and conclusion
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Agenda for hands-on session
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• Collection of trace-based performance tools
• Specifically designed for large-scale systems
• Features automatic trace analyzer providing wait-state, critical-path & delay analysis
• Supports MPI, OpenMP, POSIX threads, and hybrid MPI+OpenMP/Pthreads
• Uses Score-P instrumentation & measurement infrastructure 

and CUBE analysis report infrastructure

• Available under 3-clause BSD open-source license

• Documentation & sources:
• https://www.scalasca.org

• Contact:
• mailto: scalasca@fz-juelich.de
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Scalasca



Score-P
• Infrastructure for instrumentation and performance measurements

• Instrumented application can be used to produce several results:
• Call-path profiling: CUBE4 data format used for data exchange
• Event-based tracing: OTF2 data format used for data exchange

• Supported parallel paradigms:
• Multi-process: MPI, SHMEM
• Thread-parallel: OpenMP, Pthreads
• Accelerator-based: CUDA, HIP, OpenCL, OpenACC, Kokkos

• Open Source; portable and scalable to all major HPC systems

• Initial project funded by BMBF

• Further developed in multiple third-party funded projects

• Documentation & sources:  https://www.score-p.org

Parallel Performance Analysis using Scalasca (Oxford, UK, 22-23 
August 2023)
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• Parallel program analysis report exploration tools
• Libraries for Cube report reading & writing
• Algebra utilities for report processing
• GUI for interactive analysis exploration

• Available under 3-clause BSD 
open-source license

• Documentation & sources:
• http://www.scalasca.org

• User guide also part of installation:
• <prefix>/share/doc/CubeGuide.pdf

• Contact:
• mailto: scalasca@fz-juelich.de

10

Cube



• Run remote (often convenient)
• start X server (e.g., Xming) locally

or use mobaXterm or VNC

• connect with X forwarding enabled
• -Y may be faster but is insecure!

• load cube module and start cube 
remotely
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Cube GUI options

Install & run local 
 install Cube GUI locally on desktop
 binary packages available for macOS & Windows 

and externally provided by OpenHPC and various 

Linux distributions

 source package available for Linux, requires Qt

 configure/build/install manually or use your 

favourite framework (e.g. Spack or EasyBuild)

 copy .cubex file (or entire scorep directory) to 

desktop from remote system

OR locally mount remote filesystem

 start cube locally

https://www.scalasca.org/scalasca/software/cube-4.x/download.html

mailto: scalasca@fz-juelich.de



Advisor assessment
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Assessment 
of execution 
efficiency 
factors using 
POP model



• Largest experiment
• Application: Nekbone

• System: JUQUEEN IBM BG/Q

• 28,672 x 64 = 1,835,008 threads 
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Scalasca Exascale Readiness

• Largest experiment by user
• Application: NEST

• System: K computer

• 82,944 x 8 = 663,552 threads
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• Scalasca/Score-P/CUBE analysis based on sets of execution call-paths 
(call-graph subtrees) rather than execution time intervals
• generally all instances aggregated together (automatically)

• facilitates scalability,

• but therefore can’t readily distinguish individual (or ranges of consecutive) instances

• Comprehensive parallel execution traces are often prohibitively large
• too many events to collect/analyse, requiring too much memory

• may also be subject to considerable measurement distortion

• Necessary to balance content/expressiveness and cost
• typically an iterative process
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Alternate approach



• Prepare an initial “rough” (summary) measurement

• Determine an appropriate Focus of Analysis (FOA)

• Refine instrumentation/measurement configuration for chosen FOA
• Apply judicious filtering

• Add manual annotations and measurement control

• Collect execution trace & summary profiles with sets of HWCs

• Use CUBE Advisor to acquire efficiency metrics for FOA

• Explore other metrics as directed by efficiency metrics
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Steps



• Default of “main” will include one-off initialization (MPI_Init) and 
finalization (MPI_Finalize) as well as initial file reading, etc.
• Fine if these are only small proportions of overall execution

• Cleaner if a specific call-path can be identified which avoids the one-
off parts amortised in long production runs
• where solver/timestep/iterations occur

• expected to be (largely) homogeneous, representative of typically longer executions

• if necessary, multiple call-paths can be combined
• however, should avoid disjoint call-paths

• may be annotated as a specific Score-P region for convenience

• allows shorter execution measurements to still be representative
• proportionally reduces size of execution traces
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Determining a Focus of Analysis (FOA)



• Application developers likely know the most relevant parts of their 
code to focus on
• may depend on the particular context of analysis

• comparing a new algorithm or implementation

• addressing file I/O, etc.

• Generally, analysts won’t know and will need to determine this
• perhaps based on guidance from application developers
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Familiarity



• Often one FOA is sufficient
• provided it is a good representation of the dominant parallel execution phase

• simplifies subsequent analyses

• but sometimes beneficial to have several
• perhaps to include initialization and/or file reading/writing as comparison

• where performance/scaling characteristics are very different

• may therefore want/need to explore/evaluate several candidates

• Timeline visualization of an execution trace can help identify the key 
execution phase(s) and associated call-paths
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One or more FOA



• Obtaining an execution trace is often prohibitively expensive
• requiring instrumentation/measurement to be suitably configured

• Generally need initial profile to refine instrumentation/measurement
• “scoring” of profiles provides good estimate of total trace size and data to be 

collected by each process/thread
• “score” based on number of times each event encountered (i.e. number of visits)

• allows measurement buffers to be sized appropriately
• to avoid intermediate flushes of measurement buffers to files on disk storage

• identifies small frequent events with disproportionate overheads that don’t 
add value to measurement (and may well distort it significantly)
• these should be filtered during measurement

• or preferably avoided when instrumenting
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Which comes first: profile or trace?



• Main value is from communication and synchronization events
• typically MPI message-passing and/or OpenMP worksharing, tasking, offload

• but also SHMEM, pthreads, OpenACC, OpenCL, CUDA, ROCm/HIP, etc.

• represent additional parallel execution costs

• and the regions which provide execution context for them

• Purely computational regions are relatively low value for analysis
• might all be ignored, or retain only a few key large ones

• often fine to retain most, provided the small frequent ones are avoided
• equivalent to them being “inlined” into their parent regions
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Value determination



• HemeLB (MPI) on SuperMUC-NG
• also previously assessed on ARCHER Cray XC30 & Blue Waters Cray XE6

• SPECFEM3D (MPI+CUDA) on Leonardo-B
• MPI version previously assessed on Joloit-Curie
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Example performance assessments



• 3D macroscopic blood flow in human arterial system developed by UC London (UK)
• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary 

conditions
• exascale flagship application of EU H2020 HPC Centre of Excellence 

for Computational Biomedicine (CompBioMed)

• HemeLB open-source code and test case: www.hemelb.org
• C++ parallelized with MPI

• Intel Studio 2019u4 compiler and MPI library (v19.0.4.243)
• configured with 2 ‘reader’ processes (intermediate MPI file writing disabled)
• MPI-3 shared-memory model employed within compute nodes

to reduce memory requirements when distributing lattice blocks from reader processes

• Focus of analysis 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry
• 6.4µm lattice resolution (21.15 GiB): 10,154,448,502 lattice sites

• Executed on SuperMUC-NG Lenovo ThinkSystem SD650 (LRZ):
• 2x 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz
• 48 MPI processes/node, 6452 (of 6480) compute nodes: 309,696 MPI processes
• 190x speed-up from 864 cores: 80% scaling efficiency to over 100,000 cores

⇒ Identification & quantification of impact of load balance and its variation
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HemeLB (SuperMUC-NG)
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HemeLB@SNG strong scaling

[Execution of 9,216 processes on 192 compute nodes not possible due to insufficient compute nodes with adequate memory in ‘fat’ partition (768 GiB vs. regular 96 GiB node memory]



HemeLB@SNG strong scaling efficiency

Global scaling efficiency fairly good around 80%, before degrading at larger scales
• Parallel efficiency deteriorating following Load balance efficiency

• Communication efficiency excellent throughout

• Computation scaling (relative to 1152 processes) very good except at largest scale
• Degradation of Instructions scaling partially compensated by improving IPC scaling

[POP CoE scaling efficiency model: www.pop-coe.eu]
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Advisor: POP efficiency assessment
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Topological presentation
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• HemeLB on SuperMUC-NG (MPI)
• also previously assessed on ARCHER Cray XC30 & Blue Waters Cray XE6

• SPECFEM3D on Leonardo-B (MPI+CUDA)
• also previously assessed on Joloit-Curie
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Example performance assessments



• SPECFEM3D
• Software package for simulation of seismic wave propagation based on the spectral-element method
• Assessment for HPC CoE for Exascale in Solid Earth (ChEESE)
• Version 4.0.0 (release)

• Fortran90 (and some C) parallelized with MPI & CUDA: one MPI process per GPU
• Intel oneAPI 2023.0.0 compilers and 2021.7.1 MPI libraries (not GPU-Aware)

• Testcase: 1 source in elastic domain; 4 seismic receiver stations
• 48000 solver timesteps with intermediate writing disabled
• weak scaling (22x 128x128 = 360,448 elastic elements per rank)
• strong scaling (22x 1024x1024 = 23,068,672 elastic elements total)

• Executed on Leonardo-Booster Atos Bull Sequana XH21355 (CINECA)
• 2345 compute nodes with 32-core Intel Xeon Platinum 8358 ('IceLake') CPUs @ 2.6 GHz and 

quad Nvidia A100 ('Ampere') GPUs [64GB]
• Nvidia Mellanox HDR DragonFly++ interconnection network

• Measurements with Scalasca/2.6.1 using Score-P/8.3

• Focus of analysis (FOA): xspecfem3D/iterate_time
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SPECFEM3D (Leonardo-B)



• Structure
• setup/initialise (amortised in full run)

• read (w/o MPI), MPI_Bcast, MPI_Reduce, etc

• solver (iterate_time)
• 48000 timesteps

• non-blocking point-to-point communication for 
boundary exchange with 2D neighbours

• data transfer to/from associated GPU device and 
corresponding stream synchronization

• summary output every 500 steps
• collective MPI_Reduce

• write_seismograms executed only once

• Focus of Analysis selected for assessment: 
iterate_time
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Execution call-tree & Focus of Analysis



• Structure
• solver (iterate_time)

• contains all of the CUDA kernel executions

• 48000 timesteps
• seven of nine kernels executed by all ranks

• characteristics oft determined by position in 2D grid

• compute_add_sources_kernel only executed by a 
single GPU (rank 243 of 512)

• compute_elastic_seismogram only by 4 nearby GPUs
(ranks 241, 245, 273, 277 of 512)

• Focus of Analysis selected for assessment: 
iterate_time
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Execution call-tree & kernels
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Scaling & speed-up

• xspecfem3d FOA iterate_time on Leonardo-Booster
• Excellent weak scaling (expected to continue to higher node counts)
• Very good strong scaling (above 80% of perfect) to around 64 compute nodes (256 GPUs)
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Efficiency model (weak scaling)

• Excellent GPU weak scaling efficiency

• Very poor CPU efficiency?

• Moderate XPU (GPU+CPU) efficiency?

• Orchestration efficiency

• MPI communication 
& CUDA management

• aka Communication 
efficiency
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Efficiency model (strong scaling)

• Good GPU weak scaling efficiency to 128 GPUs (excellent load balance)

• Very poor CPU efficiency?

• Moderate XPU (GPU+CPU) efficiency?

• Orchestration efficiency

• MPI communication 
& CUDA management

• aka Communication 
efficiency
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Weak scaling (128x128 per rank)
• Excellent weak scaling

• Little GPU idle time

• MPI communication effectively 
overlapped with GPU kernel 
computation
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Strong scaling (1024x1024 total)
• Good scaling to 256 GPUs

(64 nodes)

• GPU computation time slowly 
grows progressively

• GPU idle time grows for 256 & 
particularly 512 GPUs

• CPU computation time grows 
substantially

• sync_copy_from_device &
transfer_boundary_to_device_a

• For 512 GPUs, growing MPI 
communication no longer fully 
overlapped with GPU kernel 
computation
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Topological inhomogeneities

Kernel variant executed (characteristics and corresponding execution time) varies according to position in 2D grid:
four corners, upper/lower & left/right edges, interior

16x32 grid
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Topological inhomogeneities

Kernel variant executed (characteristics and corresponding execution time) varies according to position in 2D grid:
four corners, upper/lower & left/right edges, interior

16x32 grid
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GPU computation imbalance

36% of CPU execution time is CUDA synchronization, 67% of which is 16s within transfer_boundary_from_device_a
following compute_add_sources_kernel that's only executed by a single GPU (source rank 243 of 512)



• iterate_time (solver) chosen as focus of analysis
• negligible time for initialization/finalization

• Excellent weak scaling up to 16 nodes (64 GPUs) and likely beyond
• Computation very well balanced over GPUs; Excellent GPU utilization

• MPI P2P communication time grows with scale, but effectively overlapped 
with GPU computation kernels

• Good strong scaling speedup up to 64 nodes (256 GPUs)
• Computation remains very well balanced over GPUs

• Orchestration efficiency progressively diminishes
• compute_add_sources_kernel execution by a single GPU seems the main origin

• MPI P2P communication time grows significantly, becomes no longer fully 
overlapped with GPU computation kernels
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Summary of observations
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Hands-on: Analyzing BT-MZ with Scalasca/CUBE
Anke Visser (Jülich Supercomputing Centre)



NPB-MZ-MPI Suite / BT-MZ

• The NAS Parallel Benchmark suite (MPI+OpenMP version)
• Available from:

http://www.nas.nasa.gov/Software/NPB

• 3 benchmarks configurable for various sizes & classes

• BT-MZ (Block Triangular solver, multizone version)
• solves discretized version of unsteady, compressible Navier-Stokes equations 

in three spatial dimensions

• Implemented in 20 or so Fortran90 source modules

• 200 time-steps on a regular 3-dimensional grid timed for benchmark figure

• Built & run on JUWELS-Cluster (dual 24-core Intel Skylake nodes)
• Intel compiler + MPI, instrumentation by Score-P
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Ex: Identify suitable Focus of Analysis

• Initial execution measurement configuration
• Class=B benchmark executable run on a single compute node

• 12 MPI processes each with 4 OpenMP threads

• Initial (default) summary measurement: 
• BT-MZ / scorep_bt-mz_B_12x4_sum.def / summary.cubex

• [Filtered summary measurement: scorep_bt-mz_B_12x4_sum.filt]

• [Filtered trace measurement: scorep_bt-mz_B_12x4_trace]
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Ex: Determining FOA efficiency

• Instrumentation to annotate FOA

• Revised execution measurement configuration
• Class=C benchmark executable run on a single compute node
• 24 MPI processes each with 4 OpenMP threads

• Combined summary(HWC)+trace analysis measurements:
• BT-MZ / bt-mz_C_24x4 / bt-mz_C_N1p24c1_trace+summary.cubex
• BT-MZ / bt-mz_C_24x4 / bt-mz_C_N1p24c4_trace+summary.cubex

• Compare efficiencies of the two execution configurations

• Examination of additional analysis metrics
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POP CoE

• Promotes best practices in parallel programming

• Encourages a systematic approach to performance optimization

• Facilitates and invests in training HPC experts

POP Performance Metrics 

• Build a quantitative picture of application behaviour

• Allow quick diagnosis of performance problems in parallel codes

• Identify strategic directions for code refactoring

• So far metrics for MPI, OpenMP and hybrid (OpenMP + MPI) codes

POP works

• Across application domains, platforms, scales

• With European academic, government and industrial customers 
including code developers, code users, HPC service providers and 
vendors

• To apply for a POP service go to https://pop-coe.eu/services
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Summary 

https://pop-coe.eu/services
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Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC
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